62 research outputs found

    Acute myocardial infarction and coronary vasospasm associated with the ingestion of cayenne pepper pills in a 25-year-old male

    Get PDF
    Capsaicin, one of the major active components of cayenne pepper pills, is an over-the-counter substance with sympathomimetic activity used commonly by young individuals for weight loss. Here we report the case of a previously healthy young male who developed severe chest pain after using cayenne pepper pills for slimming and sustained an extensive inferior myocardial infarction. Electrocardiography combined with a bedside transthoracic echocardiogram confirmed the diagnosis of acute myocardial infarction. The patient denied using illicit substances, and he had no risk factors for coronary artery disease. His medication history revealed that he had recently started taking cayenne pepper pills for slimming. A subsequent coronary angiogram revealed patent coronary arteries, suggesting that the mechanism was vasospasm. We postulate that the patient developed acute coronary vasospasm and a myocardial infarction in the presence of this known sympathomimetic agent. This case highlights the potential danger of capsaicin, even when used by otherwise healthy individuals

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter

    Whole blood gene expression in infants with respiratory syncytial virus bronchiolitis

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of viral bronchiolitis in infants worldwide, and environmental, viral and host factors are all of importance for disease susceptibility and severity. To study the systemic host response to this disease we used the microarray technology to measure mRNA gene expression levels in whole blood of five male infants hospitalised with acute RSV, subtype B, bronchiolitis versus five one year old male controls exposed to RSV during infancy without bronchiolitis. The gene expression levels were further evaluated in a new experiment using quantitative real-time polymerase chain reaction (QRT-PCR) both in the five infants selected for microarray and in 13 other infants hospitalised with the same disease. RESULTS: Among the 30 genes most differentially expressed by microarray nearly 50% were involved in immunological processes. We found the highly upregulated interferon, alpha-inducible protein 27 (IFI27) and the highly downregulated gene Charcot-Leyden crystal protein (CLC) to be the two most differentially expressed genes in the microarray study. When performing QRT-PCR on these genes IFI27 was upregulated in all but one infant, and CLC was downregulated in all 18 infants, and similar to that given by microarray. CONCLUSION: The gene IFI27 is upregulated and the gene CLC is downregulated in whole blood of infants hospitalised with RSV, subtype B, bronchiolitis and is not reported before. More studies are needed to elucidate the specificity of these gene expressions in association with host response to this virus in bronchiolitis of moderate severity

    Association of Glomerular Filtration Rate with High-Sensitivity Cardiac Troponin T in a Community-Based Population Study in Beijing

    Get PDF
    BACKGROUND: Reduced renal function is an independent risk factor for cardiovascular disease mortality, and persistently elevated cardiac troponin T (cTnT) is frequently observed in patients with end-stage renal disease. In the general population the relationship between renal function and cTnT levels may not be clear because of the low sensitivity of the assay. In this study, we investigated the level of cTnT using a highly sensitive assay (hs-cTnT) and evaluated the association of estimated glomerular filtration rate (eGFR) with detectable hs-cTnT levels in a community-based population. METHODS: The serum hs-cTnT levels were measured in 1365 community dwelling population aged ≥45 years in Beijing, China. eGFR was determined by the Chinese modifying modification of diet in renal disease (C-MDRD) equation. RESULTS: With the highly sensitive assay, cTnT levels were detectable (≥3pg/mL) in 744 subjects (54.5%). The result showed that eGFR was associated with Log hs-cTnT (r = -0.14, P<0.001). After adjustment for the high predicted Framingham Coronary Heart Disease (CHD) risk (10-year risk >20%) and other prognostic indicators, moderate to severe reduced eGFR was independently associated with detectable hs-cTnT, whereas normal to mildly reduced eGFR was not independently associated with detectable hs-cTnT. In addition, after adjustment for other risk factors, the high predicted Framingham CHD risk was associated with detectable hs-cTnT in the subjects with different quartile levels of eGFR. CONCLUSION: The levels of hs-cTnT are detectable in a community-based Chinese population and low eGFR is associated with detectable hs-cTnT. Moreover, eGFR and high predicted Framingham CHD risk are associated with detectable hs-cTnT in subjects with moderate-to-severe reduced renal function

    Increased Serum and Musculotendinous Fibrogenic Proteins following Persistent Low-Grade Inflammation in a Rat Model of Long-Term Upper Extremity Overuse.

    Get PDF
    We examined the relationship between grip strength declines and muscle-tendon responses induced by long-term performance of a high-repetition, low-force (HRLF) reaching task in rats. We hypothesized that grip strength declines would correlate with inflammation, fibrosis and degradation in flexor digitorum muscles and tendons. Grip strength declined after training, and further in weeks 18 and 24, in reach limbs of HRLF rats. Flexor digitorum tissues of reach limbs showed low-grade increases in inflammatory cytokines: IL-1β after training and in week 18, IL-1α in week 18, TNF-α and IL-6 after training and in week 24, and IL-10 in week 24, with greater increases in tendons than muscles. Similar cytokine increases were detected in serum with HRLF: IL-1α and IL-10 in week 18, and TNF-α and IL-6 in week 24. Grip strength correlated inversely with IL-6 in muscles, tendons and serum, and TNF-α in muscles and serum. Four fibrogenic proteins, TGFB1, CTGF, PDGFab and PDGFbb, and hydroxyproline, a marker of collagen synthesis, increased in serum in HRLF weeks 18 or 24, concomitant with epitendon thickening, increased muscle and tendon TGFB1 and CTGF. A collagenolytic gelatinase, MMP2, increased by week 18 in serum, tendons and muscles of HRLF rats. Grip strength correlated inversely with TGFB1 in muscles, tendons and serum; with CTGF-immunoreactive fibroblasts in tendons; and with MMP2 in tendons and serum. Thus, motor declines correlated with low-grade systemic and musculotendinous inflammation throughout task performance, and increased fibrogenic and degradative proteins with prolonged task performance. Serum TNF-α, IL-6, TGFB1, CTGF and MMP2 may serve as serum biomarkers of work-related musculoskeletal disorders, although further studies in humans are needed

    Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning

    Get PDF
    BACKGROUND: Remote ischemic perconditioning (RIPerC) has a promising therapeutic insight to improve the prognosis of acute myocardial infarction. Chronic comorbidities such as diabetes are known to interfere with conditioning interventions by modulating cardioprotective signaling pathways, such as e.g., mTOR pathway and autophagy. However, the effect of acute hyperglycemia on RIPerC has not been studied so far. Therefore, here we investigated the effect of acute hyperglycemia on cardioprotection by RIPerC. METHODS: Wistar rats were divided into normoglycemic (NG) and acute hyperglycemic (AHG) groups. Acute hyperglycemia was induced by glucose infusion to maintain a serum glucose concentration of 15-20 mM throughout the experimental protocol. NG rats received mannitol infusion of an equal osmolarity. Both groups were subdivided into an ischemic (Isch) and a RIPerC group. Each group underwent reversible occlusion of the left anterior descending coronary artery (LAD) for 40 min in the presence or absence of acute hyperglycemia. After the 10-min LAD occlusion, RIPerC was induced by 3 cycles of 5-min unilateral femoral artery and vein occlusion and 5-min reperfusion. After 120 min of reperfusion, infarct size was measured by triphenyltetrazolium chloride staining. To study underlying signaling mechanisms, hearts were harvested for immunoblotting after 35 min in both the NG and AHG groups. RESULTS: Infarct size was significantly reduced by RIPerC in NG, but not in the AHG group (NG + Isch: 46.27 +/- 5.31 % vs. NG + RIPerC: 24.65 +/- 7.45 %, p < 0.05; AHG + Isch: 54.19 +/- 4.07 % vs. 52.76 +/- 3.80 %). Acute hyperglycemia per se did not influence infarct size, but significantly increased the incidence and duration of arrhythmias. Acute hyperglycemia activated mechanistic target of rapamycine (mTOR) pathway, as it significantly increased the phosphorylation of mTOR and S6 proteins and the phosphorylation of AKT. In spite of a decreased LC3II/LC3I ratio, other markers of autophagy, such as ATG7, ULK1 phopsphorylation, Beclin 1 and SQSTM1/p62, were not modulated by acute hyperglycemia. Furthermore, acute hyperglycemia significantly elevated nitrative stress in the heart (0.87 +/- 0.01 vs. 0.50 +/- 0.04 microg 3-nitrotyrosine/mg protein, p < 0.05). CONCLUSIONS: This is the first demonstration that acute hypreglycemia deteriorates cardioprotection by RIPerC. The mechanism of this phenomenon may involve an acute hyperglycemia-induced increase in nitrative stress and activation of the mTOR pathway

    Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae

    Get PDF
    Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link
    corecore